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Abstract

Prediction of sector demand, which is usually measured
in terms of the number of aircraft, is essential for air
traffic management since controller actions such as
handoffs and communications, and the need for
monitoring directly scale with the number of aircraft in
the airspace. This forecasting of traffic-counts is
routinely done using a trajectory prediction method in
the Enhanced Traffic Management System. The
computed demand data is compared against pre-
established values, known as monitor alert parameters,
to determine if flow restrictions are needed. This paper
first examines traffic-count forecasting using a
deterministic procedure implemented in the Future
ATM Concepts Evaluation Tool. Based on past analysis
of Enhanced Traffic Management System data quality,
some aircraft were removed from the recorded data
during the preprocessing step to improve the quality of
the data. Steps were also taken to accommodate data
drops, correct reported altitude errors, and estimate
groundspeed. Traffic-count predictions were generated
for twenty sectors in fourteen Air Route Traffic Control
Centers in the continental United States at prediction
intervals from 15 minutes through two hours. Prediction
error (difference between the predicted and actual
traffic-counts) statistics are presented for these
predictions, which provide confidence bounds on the
predicted traffic-counts. Prediction accuracy is also
examined in terms of percentages of correct-prediction,
under-prediction and over-prediction as a function of
prediction intervals. These results for the twenty sectors
are correlated to the decreasing percentages of airborne
aircraft as a function of increasing prediction intervals.
In the second part of the paper, probabilistic prediction
of traffic-counts is examined. The general expression
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for computing the probability of having a certain
number of aircraft or more in the sector at any given
time is derived. Expressions are given for computing
the probability of an aircraft being in a sector by
assuming a Gaussian model of departure uncertainty.
The procedure for computing the probabilities of
exceeding pre-established traffic-count thresholds and
their use in decision making is illustrated via a
numerical example. Both the deterministic and the
probabilistic traffic-count forecasting procedures
provide a means for establishing confidence bounds,
which are useful from decision making point-of-view.

1. Introduction

The central purpose of traffic flow management is to
respond to demand-capacity imbalances so that the air
traffic in the United States continues to flow smoothly.
Of the several capacity constrained resources, the
significant ones are airports, fixes and sectors. Airports
are capacity constrained due to fixed number of
runways and their availability depending on wind and
visibility conditions. Capacities of fixes are limited by
air traffic controller workload when several aircraft are
held or metered at the fixes because of landing capacity
limitations at the airport. Anytime an aircraft is put into
a holding pattern, the controller needs to frequently
communicate with the pilot to determine the amount of
time the aircraft can stay airborne, especially after a
long-duration flight when the aircraft is low on fuel.
Like the fix capacities, sector capacities are also limited
by controller workload considerations. There are
several factors that effect controller’s perception of
workload in a sector including the number of aircraft in
the sector, the proportion of climbing, cruising and
descending aircraft, mix of jet and turboprop traffic,
airway layout and sector geometry [1]. Of these factors,
number of aircraft is generally accepted to be a key
factor because actions such as handoffs,
communications and monitoring directly scale up with
the number of aircraft being controlled. Due to these
reasons, an accurate forecast of the number of aircraft,
which represents demand for the available sector
capacity, is essential for a decision support system
designed to mitigate demand-capacity imbalances.
Deterministic forecasting of number of aircraft in
sectors, fixes and airports is routinely done within the
Enhanced Traffic Management System (ETMS), which
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is used operationally by both the Traffic Management
Units within the Air Route Traffic Control Centers
(ARTCC’s) and the Air Traffic Control System
Command Center (ATCSCC). The forecasting method
employed in ETMS relies on computation of each
aircraft’s entry and exit times at each sector along the
path of flight, and the times of arrival at fixes and
airports.  Sector entry and exit times are then used for
counting the expected number of aircraft in the sector
as a function of time. This demand data is then
compared against pre-established Monitor Alert
Parameter (MAP) for the sector to determine if flow
restrictions are needed [2].

Algorithms for predicting the position of aircraft or
entry and exit times assume that the departure time,
route of flight, trajectory profile, weather and flow
restrictions are known accurately. This assumption is
often invalid because of uncertainties. A certain
percentage of aircraft depart later than their scheduled
and filed departure time due to baggage handling,
mechanical difficulties, passengers, visibility and
weather conditions, departure sequencing, and traffic
flow management initiatives (for example, ground stop
and ground delay).  Similarly, the aircraft may not
follow the initially filed route of flight, which is used
for trajectory prediction, because of rerouting due to
weather conditions encountered enroute. The actual
trajectory of the aircraft may also significantly differ
from the trajectory profile assumed for the type of the
aircraft. Wind profile, forecast based on measurement
data and mathematical models, used for trajectory
prediction may be quite different from the actual wind
profile. Another source of error is the open-loop nature
of prediction that does not take traffic flow restrictions
into account. Part of the difficulty is that it is not quite
straightforward to model the impact of enroute
restrictions on the flight of a single aircraft. For
example, miles-in-trail restriction can only be defined
with respect to the aircraft in the front. Thus, the effect
of such a restriction is that the arrival sequence at a
downstream location affects the departure sequence at
an upstream location and consequently the 4-
dimensional trajectory (locations as a function of time)
of a single aircraft cannot be predicted independently of
the trajectories of other aircraft. Prediction difficulty is
further compounded with restrictions at multiple
locations.

Given that open-loop traffic-count predictions do not
match the actual traffic-counts, estimates of uncertainty
bounds about these predictions are needed to aid
decision-making. Two different approaches are
explored in this paper for establishing confidence
bounds on the traffic-count forecasts in the sectors. The
first method employs a deterministic procedure for

predicting traffic counts and then uses historical
prediction error (with respect to actual traffic-counts)
statistics for establishing uncertainty bounds. The
second method uses a probabilistic approach to provide
the probability of a certain number of aircraft or more
being in the sector at specified instants of time. Thus,
this method also provides an alternative representation
of confidence bounds. An example of this
representation is provided using departure time
uncertainty in the probabilistic forecasting method.

There have been suggestions to overcome the
inaccuracy introduced into trajectory prediction due to
departure time uncertainty by including departure
uncertainty distributions in a stochastic forecasting
method [3, 4]. The focus on departure time uncertainty
is largely guided by the assumption that departure delay
uncertainty is the main contributor to the trajectory
prediction errors [5]. Departure uncertainty has been
considered as a special case of a more general sector
entry time and exit time uncertainties in this paper. The
main contribution of the paper is extension of the
deterministic procedure to a probabilistic one for
predicting traffic-counts in the sectors and then using
the resulting probabilities for decision-making.

The paper is organized as follows. Section 2 examines
the deterministic procedure for predicting traffic-counts
in sectors and the associated confidence bounds as a
function of prediction time intervals. The technique for
probabilistic prediction of traffic-counts is developed in
Section 3. The general expression for computing the
probability that there will a certain number of aircraft or
more (for example, ten or more) at any given time in
the future in a sector is derived in Section 3. Sector
entry and exit time uncertainties resulting from
departure uncertainty are used for computing
probability of individual aircraft being in a sector at a
given instant of time in Section 4. A numerical example
is presented in Section 4 to illustrate the procedure of
using the probabilities of individual aircraft and the
expressions in Section 3 for computing the probabilities
of exceeding pre-established traffic-count thresholds in
sectors. The paper is concluded in Section 5.

2. Deterministic Prediction of Traffic-Counts

The process of prediction of the number of aircraft in a
sector as a function of time consists of two steps: 1)
predicting the location of every aircraft (both currently
airborne and proposed to depart in the future) as a
function of time, and 2) counting the number of aircraft
that fall within the boundaries of the sector.

Most algorithms for trajectory prediction require the
locations of the origin and the destination, a time of
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departure, aircraft performance data (thrust, drag and
lift data or vertical and horizontal speed profiles), wind
velocity profile and a route of flight. The proposed time
of departure and the route of flight as defined by the
flight plan, current location of the aircraft derived from
the radar, groundspeed, climb/descent rate and heading
angle are available in the ETMS and also provided as
output data in several different formats. In addition to
the data received from ETMS, databases are needed for
performance models (consisting of thrust, drag and lift
data or vertical and horizontal speed profiles) tailored to
the specific aircraft types.  If thrust, drag and lift data
are available, the linear acceleration and rate of change
of flight path angle are computed and integrated to
determine the airmass-relative velocity and flight path
angle. They are then used along with the wind velocity
components and the course angle, specified by the route
of flight, to predict the position of the aircraft. The
three-dimensional point-mass equations of motion that
use the thrust, drag and lift data are given in Reference
6.

An alternative procedure is used, if climb/descent rates
and airspeed are given as a function of altitude, instead
of thrust, drag and lift data. The climb and descent rates
are integrated forward to obtain the altitude at the next
instant of time. Groundspeed is obtained using the
horizontal components of the airmass-relative velocity
and the wind velocity along the path specified by the
course angle. The groundspeed and the course angle are
then used in the equations of motion to predict the
location of the aircraft. This method is implemented in
the Future Air Traffic Management Concepts
Evaluation Tool (FACET), which has been used for
generating all the results described here. The details of
computation of groundspeed and course angle in a wind
field and their use in the equations of motion are
described in Reference 7. Latitude, longitude and
geometric altitude are obtained by integrating these
equations. Additional description of this trajectory
prediction method is provided in Reference 8.

Two main issues plague the trajectory prediction
process. The first issue relates to the quality of data that
is input to a trajectory prediction algorithm. The study
in Reference 9 investigated the quality of the air traffic
data provided by ETMS from trajectory prediction
accuracy point-of-view. Data quality was examined in
terms of the availability of flight plans, deviations from
flight plans, departure delays, accuracy of altitude data,
and the extent of data drops. Based on examination of
one day’s traffic, this study concluded that on an
average, flight plans were missing for 12% of the
aircraft in the airspace at any given time. In the worst
case, flight plans were missing for 19% of the aircraft.
It was found that 88% of the aircraft stay within ten

miles from their filed flight plans. About 8% stay
within 10-20 miles and 3% stay within 20-50 miles.
Only 1% of the aircraft deviate by more than 50 miles.
Analysis of departure delays revealed that about 92% of
the aircraft depart within 20± minutes. The accuracy
of altitude data output via ETMS was found to be poor
during the climb and descent segments. Data drops
were found to be a significant data quality issue. On an
average, track data are unavailable for 37% of the
aircraft at any given instant of time. In order to
compensate for all the data quality issues analyzed in
Reference 9, certain heuristics have to be added to the
basic trajectory prediction algorithms.

The second important issue relates to evaluation of the
accuracy of traffic-counts based on predicted
trajectories. The most prevalent technique is to compare
the predicted traffic-counts against the actual number of
aircraft in the sector obtained from recorded air traffic
data [10-12].  This approach suffers from the fact that
trajectory prediction is done without knowledge of prior
traffic flow control actions while the actual number of
aircraft in a sector at any given time is an outcome of
traffic flow control actions in response to the forecast
[5].  Thus, in cases where control actions are taken, the
predicted traffic-counts cannot be compared with the
actual traffic-counts [5]. Comparisons are possible in
those cases where both the predicted traffic-counts and
the actual traffic-counts are significantly below the
MAP value, based on the hypothesis that in these
instances control actions were not taken.

In summary, due to data quality and evaluation issues,
consistent bookkeeping of the aircraft that are predicted
to be in a sector and that actually fly through the sector
is needed. For example, if flight plan is missing for an
aircraft when prediction is made, that aircraft should be
excluded from the actual count at the time where
comparison is desired. Similarly, if an aircraft deviates
by more than a specified distance from the flight plan,
that aircraft should not be included in the actual count.
The main benefit of this approach is that it allows one
to assess the quality of predicted data when the
prediction algorithm has all the information it needs. A
comparison of the predicted data against actual data
without these adjustments reflects more on the quality
of the input data rather than the ability of the prediction
algorithm to predict correctly.

To enable comparison of the traffic-counts generated
using the trajectory prediction algorithm implemented
in FACET with the actual traffic-counts in the sectors,
ETMS data were collected for 24 hours on July 17,
2002. Data in “Orig” format (one of the several formats
in which ETMS data are provided), consisting of
messages for proposed departure time, cancellation,
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filed flight plan, amended flight plan, actual time of
departure, track position and actual time of arrival, were
first analyzed using FACET. Results of the data quality
analysis for this data are reported in Reference 9. In
light of the data quality analysis, some aircraft were
removed from the data to improve data quality. The
resulting data only included aircraft that originated and
landed within the confines of the Continental U. S.
airspace. Aircraft that deviated by more than 30 miles
from their flight plans at any time during their flight
were removed. Aircraft that departed earlier or later
than 40± minutes with respect to their proposed
departure times were also removed.

In addition to data conditioning steps taken during the
pre-processing phase, three additional corrective actions
are taken during the trajectory prediction process. The
first action is taken to safeguard against data drops by
retaining aircraft position data for a period of time and
by estimating the position of aircraft at time instants
when data drops occur. Track and flight plan
information for an aircraft is preserved in FACET for
20 minutes unless an arrival message is provided by
ETMS. Track and flight plan data are removed if the
last reported track position is near the destination
airport and the aircraft is expected to have landed.  If
the aircraft is far away from its destination, its position
is estimated by integrating the trajectory forward from
the previous track position to the next waypoint along
the flight plan. Situations where flight plans are
unavailable, position is estimated assuming that the
aircraft maintain course. In addition to assumptions
about path, FACET assumes constant groundspeed and
altitude for the duration of data drop.  The second
action is taken to correct for errors in ETMS reported
altitude during the climb and descent phases of flight.
The heuristic algorithm described in Reference 9 is
used for this purpose. Finally, the third corrective action
consists of using ETMS reported groundspeed during
the cruise phase rather than the groundspeed obtained
from aircraft performance models. The procedure
consists of using ETMS provided groundspeed
(originally computed by the ARTCC Host computer
using surveillance data derived from Air Traffic
Control Radar Beacon System) and the predicted wind
velocity to estimate the airspeed at the initial location.
This airspeed is then added to the predicted windspeed
to generate an estimate of groundspeed along the path
specified by the flight plan. The resulting groundspeed
is used in the equations of motion to predict the location
of aircraft at future instants of time.

After conditioning the input data and enhancing the
trajectory prediction process, traffic-count prediction
data were generated for twenty sectors from fourteen
ARTCCs listed in Table 1.  All the sectors listed in this

table are high-altitude sectors that often experience
heavy traffic loads.

Table 1: Sectors for which prediction data were
generated.

ARTCC Sectors
Albuquerque ZAB70
Atlanta ZTL15
Boston ZBW10
Cleveland ZOB29
Denver ZDV18
Fort Worth ZFW48, ZFW93
Houston ZHU26
Indianapolis ZID84, ZID98
Kansas City ZKC84, ZKC98
Los Angeles ZLA30, ZLA35
Miami ZMA59
New York ZNY10, ZNY42
Seattle ZSE48
Washington DC ZDC12, ZDC72

Figure 1 shows the predicted and the actual time
histories of the number of aircraft in Sector 93 (ZFW93
in Table 1) of the Fort Worth ARTCC. The prediction
interval of two-hours was used for generating these
results. Predicting traffic-counts once every minute two
hours into the future generated the predicted time
history.   The MAP value of 18 aircraft for Sector 93 is
marked in the Figure. Observe from the figure that both
the actual traffic-counts and the predicted traffic-counts
remain below the MAP value.

Figure 1: Two-hour prediction and actual traffic-count
time histories in Sector 93 of the Fort Worth ARTCC.

Since traffic flow management decisions are made by
comparing the peak number of aircraft in a fifteen-
minute interval with the MAP value (see: Reference 2),
Figure 2 was generated to compare the predicted peak
number of aircraft in fifteen-minute intervals with the
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actual peak traffic-counts. Actual peak traffic-counts
were obtained by choosing the maximum number of
aircraft that were in the sector in non-overlapping
fifteen minute intervals spanning the two to 21 hour
time periods shown along the abscissa in Figure 2.
Similarly, the predicted peak traffic-counts were
obtained from the set of two-hour predictions (once
every minute) in each fifteen-minute interval.

Figure 2: Comparison of two-hour predictions of peak
traffic-counts with actual peak traffic-counts in Sector
93 of Fort Worth ARTCC.

The degree of prediction accuracy seen in both Figures
1 and 2 were also seen for the other sectors listed in
Table 1.  Statistics of the prediction errors (difference
between the predicted aircraft-count and the actual
aircraft-count in the sectors) were computed for 15-
minute, 30-minute, 45-minute, 60-minute and two-hour
prediction intervals.  Note that these 15-minute through
two-hour prediction error samples were available at
one-minute intervals (see: Figure 1, which shows two-
hour predictions at one-minute intervals). Table 2
shows the 60-minute prediction error statistics. The first
column lists the name of the sector. The second and
third columns show the average error m  and the

standard deviation of the error s  rounded to integer
number of aircraft. The fourth and the fifth columns

show the average error pm  and the standard deviation

of the error ps  of peak traffic-counts (see: Figure 2,

which shows both predicted and actual peak traffic-
counts). The values in these last two columns are also
rounded off to an integer number of aircraft. Observe
from Table 2 that the average error stays bounded
between –2 and +2 aircraft (see: column 2) and the
standard deviation stays bounded between 1 and 3
aircraft (see: column 3). The table also shows that the
trends in columns four and five for prediction errors of
15-minute peak traffic-counts are very similar to those
in columns two and three.

The statistics of the two-hour prediction errors are
summarized in Table 3.  Comparing the values in Table
3 with those in Table 2, it is seen that the average

values m  and pm  are lower for two-hour predictions,

which indicates a tendency to under-predict the traffic-
counts. The standard deviation values in columns three
and five do not change significantly for two-hour
predictions compared to one-hour predictions.

Table 2: Sixty-minute prediction error statistics.

Sector m s pm ps
ZAB70 0 1 0 1
ZBW10 1 2 1 2
ZDC12 1 2 1 2
ZDC72 2 3 2 3
ZDV18 1 2 1 2
ZFW48 0 2 1 2
ZFW93 0 2 0 2
ZHU26 0 1 0 2
ZID84 0 2 -1 2
ZID98 2 2 3 2
ZKC84 1 2 1 2
ZKC98 1 2 1 2
ZLA30 0 2 0 2
ZLA35 -1 2 -1 2
ZMA59 -2 3 -2 3
ZNY10 2 3 3 3
ZNY42 0 2 1 2
ZOB29 2 3 2 3
ZSE48 0 1 0 1
ZTL15 2 3 2 3

Table 3: Two-hour prediction error statistics.

Sector m s pm ps
ZAB70 0 2 0 1
ZBW10 0 2 0 2
ZDC12 0 2 0 2
ZDC72 0 3 0 3
ZDV18 0 2 0 2
ZFW48 -1 2 -2 2
ZFW93 -1 2 -1 2
ZHU26 0 2 0 2
ZID84 -1 2 -2 2
ZID98 1 2 2 2
ZKC84 0 2 0 2
ZKC98 0 2 1 2
ZLA30 -1 2 -1 2
ZLA35 -1 2 -2 2
ZMA59 -2 3 -2 3
ZNY10 0 2 0 2
ZNY42 -1 2 -1 2
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ZOB29 0 2 1 2
ZSE48 0 1 0 1
ZTL15 1 2 1 2

An alternative approach for examining prediction
accuracy as a function of prediction interval is to count
the number of times the predicted number of aircraft
were within a certain bound around the actual number
of aircraft. Similarly, the number of times the
predictions were above the bounds and below the
bounds can be counted. These counts can then be used
for computing the percentage of correct-prediction
(within the bounds), under-prediction (below the
bounds) and over-prediction (above the bounds). Figure
3 shows these results for Sector 93 (ZFW93) in the Fort
Worth Center. Actual traffic-counts 2± aircraft were
used as the bounds. The symbols on the graphs show
the results at 15-minute, 30-minute, 45-minute, 60-
minute, 90-minute and two-hour prediction intervals.
The graphs show that the percentage of correct-
prediction decreases with increasing prediction time
intervals. The extent of under-prediction increases with
increasing prediction time intervals. The degree of
over-prediction remains small.

Figure 3: Percentage correct-prediction, under-
prediction and over-prediction with respect to actual
traffic-counts 2±  aircraft for Sector 93 of the Fort
Worth ARTCC.

These trends of decreasing correct-prediction and
increasing under-prediction with increasing prediction
time intervals were also seen for the other sectors in
Table 1 and are summarized in Tables 4 and 5. The
percentages (rounded off to integers) in columns two
through seven are for 15-minute, 30-minute, 45-minute,
60-minute, 90-minute and two-hour predictions,
respectively.

Table 4: Percentage correct-prediction within
2± aircraft.

Sector 15 30 45 60 90 120
ZAB70 89 87 84 79 78 76
ZBW10 81 76 75 73 70 62
ZDC12 74 73 73 71 71 70
ZDC72 67 65 55 60 61 62
ZDV18 78 74 70 68 63 61
ZFW48 68 71 70 71 69 56
ZFW93 87 81 75 70 68 63
ZHU26 91 89 86 86 82 82
ZID84 78 78 72 73 66 60
ZID98 59 60 58 59 58 64
ZKC84 74 70 64 62 62 61
ZKC98 82 78 71 71 67 69
ZLA30 69 69 71 67 65 61
ZLA35 72 61 62 61 58 53
ZMA59 69 69 67 65 63 63
ZNY10 54 61 59 63 67 69
ZNY42 70 74 73 71 69 60
ZOB29 75 72 69 64 66 66
ZSE48 96 95 94 93 92 90
ZTL15 70 70 65 65 67 66

Table 5: Percentage under-prediction.

Sector 15 30 45 60 90 120
ZAB70 6 10 11 18 20 21
ZBW10 6 7 13 16 19 32
ZDC12 3 6 11 10 13 20
ZDC72 5 8 7 12 16 23
ZDV18 19 23 25 25 31 34
ZFW48 8 19 19 22 25 43
ZFW93 11 16 22 26 28 35
ZHU26 5 7 9 9 15 15
ZID84 17 16 22 23 31 39
ZID98 2 5 9 10 12 13
ZKC84 17 20 22 24 25 34
ZKC98 5 7 9 10 15 20
ZLA30 9 29 26 31 33 38
ZLA35 26 38 36 38 41 46
ZMA59 31 31 33 35 37 37
ZNY10 2 7 7 9 10 23
ZNY42 7 15 19 23 26 38
ZOB29 11 13 16 15 20 25
ZSE48 4 5 6 7 8 9
ZTL15 5 8 12 12 15 22

This observation that the predicted traffic-counts are
less than the actual traffic-counts for longer duration
predictions, leads one to suspect that more aircraft are
on the ground and flight plans are not available when
predictions are made for longer time intervals. To
ascertain the merits of this conjecture, percentages of
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airborne aircraft and those on the ground were
computed as predictions were made during the chosen
prediction time intervals. For example, consider the
two-hour predictions shown at one-minute intervals in
Figure 1. Numbers of aircraft that are airborne and that
are scheduled to depart (currently on the ground) are
counted in each two-hour prediction interval. Total
numbers of airborne aircraft and those on the ground
are obtained by adding all the two-hour prediction
counts from the previous step. The percentages are then
obtained by using these totals. The graphs in Figure 4
show the percentages of airborne and non-airborne
aircraft that were predicted to be in Sector 93 of the
Fort Worth Center as a function of 15-minute through
two-hour prediction intervals. The two-hour data points
were obtained as the prediction time history shown in
Figure 1 was generated.

Figure 4: Percentages of airborne aircraft and aircraft
on ground that are predicted to be in Sector 93 of the
Fort Worth ARTCC as a function of prediction interval.

Observe from Figure 4 that the proportion of airborne
aircraft to those on the ground decreases with
increasing prediction time intervals. For example, 97%
of the aircraft are airborne and only 3% are on the
ground during a 15-minute prediction interval as
compared to 30% are airborne and 70% are on the
ground during a two-hour prediction interval. Since
uncertainties are higher for aircraft on the ground and
that there are more aircraft on the ground during longer
prediction time intervals, the net result is that long-
range forecast is not as accurate as short-range forecast.

The trends observed in Figure 4 for predictions of
traffic-counts in Sector 93 of Fort Worth ARTCC were
also seen for predictions of traffic-counts in all the
other sectors listed in Table 1. These results are
summarized in Table 6. The table shows the percentage
of aircraft on the ground. To obtain the percentage of
airborne aircraft, subtract the percentage of aircraft on

the ground from 100. The values in the columns two
though seven are for 15-minute through two-hour
prediction intervals as indicated in the table header.

Table 6: Percentage of aircraft on the ground.

Sector 15 30 45 60 90 120
ZAB70 3 3 14 20 47 67
ZBW10 3 20 31 44 75 82
ZDC12 8 17 29 42 64 85
ZDC72 4 25 51 74 93 94
ZDV18 0 10 18 23 46 60
ZFW48 31 41 63 68 76 87
ZFW93 3 12 35 40 57 70
ZHU26 2 9 19 22 45 66
ZID84 11 43 56 65 86 94
ZID98 8 23 38 57 74 81
ZKC84 9 24 49 57 69 74
ZKC98 2 20 42 48 70 76
ZLA30 35 66 74 85 86 85
ZLA35 14 33 43 54 58 54
ZMA59 2 11 25 26 40 68
ZNY10 17 54 71 81 90 92
ZNY42 50 66 90 93 96 96
ZOB29 3 18 28 60 74 73
ZSE48 5 23 48 58 57 65
ZTL15 3 14 37 55 91 97

The next section describes a procedure for assigning
probabilities to the traffic-count forecasts obtained
using the deterministic procedure described in this
section.

3. Probabilistic Prediction of Traffic-Counts

As results in the previous section show, there are
differences in traffic-counts predicted by a deterministic
algorithm compared to the actual traffic-counts. These
errors were shown to increase with increasing
prediction intervals. The conclusion that longer term
prediction (beyond two hours when a large fraction of
the aircraft in the prediction set are not airborne) is
unreliable, causes difficulties from flow control
perspective because flow control decisions are based on
these predictions. The fact that the trajectory prediction
process and the resulting traffic-counts will always be
somewhat inaccurate due to modeling inaccuracies,
departure-demand uncertainties, convective weather
uncertainties, and lack of knowledge of flow
restrictions, suggests that uncertainty bounds need to be
provided around the predictions. A high probability of
the predicted traffic-count exceeding the MAP value
would then suggest that flow restrictions are
immediately needed while a low probability would
suggest that the decision to place restrictions could be
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postponed to a later time. Motivated by this objective,
this section describes a method for computing the
traffic-count probabilities.

Let, jip  and jep  be the probabilities of aircraft

j entering a sector and leaving the same sector as a

function of time. The probability jp  that the aircraft

j  is in the sector at any given time is obtained in terms

of the entry and exit probabilities as:

jejij ppp -= (1)

If n  aircraft are predicted to be in the sector at some
time, the probability that all these aircraft will be in the

sector at the same time, nP , is obtained by the product

of the probabilities as:

’
££

=
nj

jn pP
1

(2)

The probability that 1-n  aircraft will be in the sector
at the same time is given by:
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11
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where,

ii pq -= 1 (4)

is the probability that aircraft i will not be in the sector.
If three aircraft are predicted to be in the sector with

probabilities 1p , 2p  and 3p , respectively, the

probability of two aircraft being in the sector at the
same time is obtained via Equation (3) as follows:
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the expression in Equation (3) can be rewritten as:
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with nP  defined in Equation  (2).

The probability that 2-n aircraft will be in the sector
at the same time can also be computed, in a similar
manner described earlier for the example in Equation
(5), by considering all combinations of two aircraft not
being in the sector at the same time as follows.
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Using the definition in Equation (6), the expression for

2-nP  can be rewritten as:
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2 (9)

A general expression for the probability of “ m ”
aircraft being in the sector at the same time is obtained
by construction as:

ÂÂ Â
£<+££ +£< ---

-
=

nii
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11 21

21
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aaa L  (10)

The probability that there will be m or more aircraft in
the sector can now be obtained as:

Â
££

=
nim

im PR (11)

Observe that 10 ££ mR . The computed value of

mR can be compared with the predetermined Monitor

Alert Parameter (MAP) to decide whether flow control
initiatives are needed. For example, if the traffic-count
(obtained using the deterministic forecasting procedure)
is predicted to exceed the MAP value by one or two
aircraft, flow restrictions are imposed following the
currently used procedures. The decision would be quite
different if the probability of exceeding the MAP value
by two was less than 10%. The main benefit of the
probabilistic approach is that it provides the decision
maker with a metric of risk, which allows the decision
maker to tradeoff the cost of allocating resources for
highly unlikely events against the consequence of
postponing the decision to a later time.



American Institute of Aeronautics and Astronautics
9

In addition to using the probabilities of individual

aircraft for computing mR  via Equation (11), they can

also be used for computing the average number of
aircraft expected in the sector as a function of time. The

probability, jp , that aircraft j  will be in a sector,

implies that if a large number of trials (for example,
L trials) were made, this aircraft would be in the sector

Lp j  times.  Although in reality, arrival of an aircraft

into a sector may depend on the arrival of other aircraft
due to traffic management initiatives such as metering
or miles-in-trail, assuming that each aircraft arrives and
departs independently of other aircraft results in:

Â
££

=
nj

jpLN
1

(12)

aircraft in L  trials. The average number of aircraft in a
trail is then:

Â
££

=
nj

jpN
1

(13)

Thus, the average number of aircraft in a sector at a
given time is obtained as the sum of the probabilities of
individual aircraft.

The main results of the development presented in
Equations (11) and (13) do not make any assumptions
about how the probabilities of an aircraft arriving into a
sector and departing from the sector, or being in the
sector, are computed.  For example, probabilities of
entry into a sector and exit from the sector can be
computed as a function of departure and arrival
airports, route of flight, type of flight (long-haul or
short-haul), distance from the sector, time of the day,
weather conditions enroute and at the destination
airport, and current or planned TFM initiatives. Such a
model can be developed by analysis of historical air
traffic and weather data. A much simpler model that
only takes departure time uncertainty into account is
described in the next section. This simpler model does
illustrate the procedure for computing the probability of
exceeding the sector monitor alert parameter value via
Equation (11) when departure times of the aircraft are
not known precisely.

4. Departure Time Uncertainty Modeling

To predict the time of arrival of an aircraft into a sector
using a deterministic procedure, the time of departure

jdt  and the time of flight along the route of flight 
jft

are needed. The time of arrival at the sector is then
obtained as:

jfjdji ttt += (14)

The time of departure from the sector can be computed
by adding the time it takes to fly through the sector.
Thus,

fjije Ttt += (15)

where, jit  is the sector entry time, fT  is the flight

time though the sector and jet  is the sector exit time.

Assuming that the flight time to the sector and also the
time it takes to fly across the sector are modeled
accurately, any uncertainty in the departure time
directly translates into sector entry time and sector exit
time uncertainties (see: Equations (14) and (15)).

The first source of departure time information for an
aircraft is obtained from the airline schedule database in
ETMS data. This information is updated when ETMS
receives a flight plan message from the ARTCC Host
computer. Between forty-five minutes to one and a half
hours prior to departure, airline dispatchers file a flight
plan with the air traffic control, which contains the
proposed time of departure along with the aircraft type,
cruise-speed, cruise-altitude and route information.
Analysis of ETMS traffic data suggests that about 80%
of the aircraft depart within +10 and –10 minutes of
their proposed departure times [9]. About 92% of the
aircraft depart within +20 and –20 minutes. Although
the distribution of the departure delays fit Poisson
distributions (a different one for departures from each
airport) somewhat better than Gaussian distributions
(see: Reference 13), Gaussian distributions have been
used here for modeling departure time uncertainty
because it is easy to obtain closed form expressions
with them since Gaussian distributions are continuous.

As borne out by data analysis that most flights takeoff
within a small interval ( 10± minutes) around the
proposed time of departure, the mean of the departure
distribution model can be set to the proposed time of
departure.  Adding the flight time to the mean of
departure distribution model results in the mean of the
sector entry distribution model as a consequence of
Equation (14).  In other words, the sector entry time
distribution is the departure distribution shifted by the
flight time needed for arriving at the sector. With the

mean sector entry time mt  given as:
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fd ttt +=m (17)

the probability density function for Gaussian (Normal)
distribution model is:

( ) 2

2

2
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2

1 s
m
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tt

i

i

etf
-

-

P
= (18)

where, s  is the standard deviation of the departure
delays  (a characteristic of  the airport from which this

aircraft departed),  and it  is a sector entry time sample

from the Gaussian distribution model. The probability
of the aircraft having entered the sector at time t can be

obtained by integrating Equation (18) from •-  to t
as:
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The mean sector entry time itm  is given by Equation

(17).  Defining the mean exit time as:

ffde Tttt ++=m (20)

the probability of departure from the sector can be
computed by using the probability density function in
Equation (18) as:
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The probability that the aircraft is in the sector at time
t  is obtained using Equations (1), (19) and (21) as
follows.
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  (22)

Observe from Equation (22) that 0)( =-•p  and also

0)( =•p .

Once the probability of being in the sector is computed
for every aircraft at time t , the probability that there
will be more aircraft in the sector than that specified by

the Monitor Alert Parameter can be determined using
Equation (11) and the average number of aircraft
(expected value) can be determined using Equation
(13).

In order to use the probability computation procedure
described in Equation (22), the standard deviation
values of departure delay distributions are needed.
Standard deviation values were computed for the top 40
airports in the United States by fitting a Gaussian model
to the departure distribution data, following the
procedure outlined in Reference 13. The standard
deviation values in minutes are listed in Table 7. The
average value of 16.5 minutes, which is the average of
the standard deviation values of the 40 airports listed in
Table 7, is used for departures from all other airports
not listed in Table 7.

Table 7: Standard deviation of departure delay
distributions for the top 40 U. S. airports.

Airport Code City ds
KATL Atlanta 19.4
KBNA Nashville 14.5
KBOS Boston 16.5
KBWI Baltimore 14.9
KCLE Cleveland 18.5
KCLT Charlotte 15.5
KCVG Cincinnati 14.8
KDCA D. C. 13.6
KDEN Denver 18.5
KDFW Fort Worth 21.5
KDTW Detroit 18.4
KEWR Newark 18.5
KFLL Fort Lauderdale 15.6
KIAD D. C. 18.5
KIAH Houston 15.0
KIND Indianapolis 19.2
KJFK New York 19.6
KLAS Las Vegas 14.5
KLAX Los Angeles 12.2
KLGA New York 22.3
KMCI Kansas City 13.7
KMCO Orlando 11.9
KMDW Chicago 16.9
KMEM Memphis 16.7
KMIA Miami 15.2
KMSP Minneapolis Saint Paul 16.8
KORD Chicago 16.8
KPDX Portland 15.0
KPHL Philadelphia 21.5
KPHX Phoenix 16.7
KPIT Pittsburgh 16.6
KRDU Raleigh Durham 15.6
KSAN San Diego 12.6
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KSEA Seattle 17.1
KSFO San Francisco 17.1
KSJC San Jose 15.0
KSLC Salt Lake City 15.7
KSTL Saint Louis 15.8
KTEB Teterboro 22.1
KTPA Tampa 11.9

Starting with the proposed times of departures and the
standard deviations of departure delay distributions for
the various airports, the procedure for determination of
probabilities of traffic-counts can be outlined via the
following example in which traffic-count predictions
are desired two hours in the future in Sector 93 of the
Fort Worth ARTCC. Given the state information
(position, velocity and route of flight) for aircraft that
are currently airborne and intent information (proposed
departure time, departure airport, type of aircraft, route
of flight, cruise-speed and cruise-altitude) of the aircraft
that are scheduled to depart in the next few hours, the
deterministic forecasting procedure, described earlier in
Section 2, is used to determine the estimated times of
arrivals to Sector 93 and departures from Sector 93. The
nominal entry and exit times computed using the
deterministic procedure are then used as mean entry and
exit times for the probability computation using
Equation (22). Numerical values of the probabilities of
the aircraft being in Sector 93 are then used in Equation
(11) to determine the probabilities of  “m” or more
aircraft being in the sector at the same time.  Plots of
the computed probabilities are then used for guiding
decision-making.

Figure 5 shows the probabilities of exceeding a certain
number of aircraft in Sector 93 of Fort Worth ARTCC
at particular instants of time. For example, the graph
marked with the triangle symbol shows that the
probability that there will be one or more aircraft in
Sector 93 is 65%, two or more aircraft is 25%, three or
more aircraft is 6% and four or more aircraft is 1%.
Similarly, the graph corresponding to the probabilities
at 17 hours and 30 minutes (noted as 17.5 in the legend)
shows that the probability of exceeding four or more
aircraft is 100%, five or more aircraft is 82%, six or
more aircraft is 48%, seven or more aircraft in 20%,
eight or more aircraft is 6% and nine or more aircraft is
1%. The envelope of the probability graphs, obtained
using all time intervals, is marked with the circle
symbol. This graph shows that at no time will Sector 93
have more than 14 aircraft. It also shows that at some
instant of time there is a 40% probability that there will
be ten or more aircraft in Sector 93.  Both, the graphs at
particular instants of time and the envelope, provide a
measure of the likelihood that the sector will experience
a certain traffic load. Thus, this technique provides a
natural way for establishing confidence bounds. If the

MAP value for Sector 93 were 7, the graph with the “x”
symbol shows that there is only a 20% probability of
seven or more aircraft, 6% of eight or more aircraft, and
1% of nine or more aircraft. Similarly, the envelope
suggests that there is a 100% probability of seven or
more aircraft, 91% of eight or more aircraft and 68% of
nine or more aircraft being in the sector at some instant
of time. The confidence bounds can be used by the
decision-maker to commit the correct amount of
resources balanced against the risk of exceeding the
MAP value

Figure 5: Probability of exceeding MAP values in
Sector 93 of the Fort Worth Center at particular instants
of time.

5. Conclusions

Due to the pivotal role of traffic-count forecasting for
flow control decisions in air traffic management, this
paper examined both deterministic and probabilistic
techniques for predicting future traffic-counts in the
sectors and confidence bounds on these predictions.
The deterministic traffic-count procedure   implemented
in the Future ATM Concepts Evaluation Tool (FACET)
was examined first. To compare the traffic-counts
generated using the forecasting procedure with the
actual traffic-counts in the sectors, a day’s worth of air
traffic data provided by the Enhanced Traffic
Management System (ETMS) were recorded. Guided
by past analysis of Enhanced Traffic Management
System data quality, some aircraft were removed from
these data during the preprocessing step for improving
the data quality. Additional corrective steps were taken
during runtime to compensate for data drops and
reported altitude errors. The deterministic forecasting
procedure used estimated groundspeed derived from
ETMS data rather than model-based groundspeed for
trajectory prediction, which is needed for computation
of traffic-counts.
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Algorithms in FACET were used for generating traffic-
count predictions for twenty sectors in fourteen Air
Route Traffic Control Centers in the continental United
States at prediction intervals from 15 minutes through
two hours. Statistics of the difference between the
predicted and actual traffic-counts were presented for
these twenty sectors. Accuracy of predictions was
examined in terms of percentages of correct-prediction,
under-prediction and over-prediction as a function of
prediction intervals. These results were found to be
correlated to the decreasing percentages of airborne
aircraft as a function of increasing prediction time
intervals.

Building on the deterministic traffic-count forecasting
procedure described in the first part of the paper, the
method for probabilistic prediction of traffic-counts is
examined in the second part of the paper. The general
expression for computing the probability of having a
certain number of aircraft or more in the sector at any
given time was derived. Gaussian model of departure
uncertainty was assumed for deriving expressions for
computing the probability that an aircraft will be in a
sector. A numerical example was presented to illustrate
the method for computing the probabilities of
exceeding pre-established traffic-count thresholds and
using them for decision-making.
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